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Model-Free Learners and Model-Based Solvers in AI

Input x =⇒ Function f =⇒ Output f(x)

• Learners require experience over related problems x but then fast

. They compute function f from training, then apply it

• Solvers deal with completely new problems x but need models/thinking

. They compute f(x) for each input x from scratch
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Learners and Solvers: System 1 and System 2?

Dual process accounts of the human mind assume two processes (D. Kahneman:
Thinking, Fast and Slow, 2011; K. Stanovich: The Robot’s Rebellion, 2005)

System 1 System 2
(Intuitive Mind) (Analytical Mind)

fast slow
associative deliberative

unconscious conscious
effortless effortful
parallel serial

specialized general
. . . . . .

Learners? Solvers?
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Key Challenge in AI

• General two-way integration of System 1 and System 2 inference in AI systems

. Learn representations that support reasoning/planning, general/reusable

• Yoshua Bengio’s challenges reflected in title of his IJCAI 2021 talk:

. System 2 Deep Learning: Higher-level cognition, agency, out-of-distribution
generalization and causality

• Yann LeCun’s three challenges, AAAI 2020:

. AI must learn to represent the world

. AI must think and plan in ways compatible with gradient-based learning

. AI must learn hierarchical representation of action plans
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Bottom-Up vs. Top-Down Representation Learning

• Bottom-up approach (most common)

. Representations emerge from architecture, loss function, and “right” bias

• Top-down approach (logic)

. Representations learned over language with “right” syntax and semantics

. Meaningful learning bias, transparency, reasoning, what vs. how

Top-down approach in line with “traditional AI”: just learn from data the
representations that have traditionally been handcrafted

Related but different than neuro-symbolic AI where representation languages used
mainly to encode background knowledge
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Example: Learning representations over FO-STRIPS

• Planning problems P specified as instances P = 〈D, I〉 of general domain D

. Domain D specified in terms of action schemas and predicates

. Instance is P = 〈D, I〉 where I details objects, init, goal

move(c, c′)

Preconds: atRobot(c), adjacent(c, c′)

Effects: atRobot(c′), ¬atRobot(c)

pick(o, c):

Preconds: atRobot(c), at(o, c), emptyhand

Effects: held(o), ¬at(o, c), ¬emptyhand

drop(o, c):

Preconds: atRobot(c), held(o)

Effects: at(o, c), ¬held(o), emptyhand

• Can symbolic, first-order representations like this be learned?
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Example: Learning FO-STRIPS from State Graph

Input: State graph G of agent in 1×3 grid, moving/picking/dropping 2 pkgs
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Output: Simplest STRIPS representation P = 〈D, I〉 that generates G

Move(?to, ?from):

Pre: neq(?to, ?from), p5(?to, ?from)

Pre: p2(?from), -p2(?to)

Eff: -p2(?from), p2(?to)

Pick(?p, ?x):

Pre: p2(?x), p1, -p3(?p), p4(?p, ?x)

Eff: -p1, p3(?p), -p4(?p, ?x)

Drop(?p, ?x):

Pre: p2(?x), -p1, p3(?p), -p4(?p, ?x)

Eff: p1, -p3(?p), p4(?p, ?x)

Interpretation of learned predicates:

– p1: gripper empty

– p2(x): agent at cell x,

– p3(p): agent holds pkg p,

– p4(p, x): pkg p in cell x

– p5(x, y): cell x adj to y

• Domain D learned from 1× 3 grid, 2 pkgs, correct for any grid, any # of pkgs
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Summary: The unusual scope of logic in AI/ML

• Learning representations that support reasoning/planning is central in AI/ML

• Logic has key role to play: representations learned over languages with known
structure and semantics

• Examples from own recent work:

. Learning FO-STRIPS representations for planning from state graphs

. Learning general policies using C2 features or Graph Neural Nets

. Learning sketches for decomposing in subproblems of bounded width
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AI and Social Impact

• System 2 not only necessary for AI systems; essential for people and societies

• AI far from human-level intelligence, yet it can be used for good or ill

• Ethical committees and AI principles good but not sufficient (Moshe)

• Markets and politics play our System 1, focused on the bottom line

• If we want good AI, we need a good and decent society . . .
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“Need artificial intelligence for social good because

natural intelligence is busy in other pursuits”

:-)
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