
SAT-based Reasoning Techniques for LTL over
Finite and Infinite Traces

Jianwen Li

East China Normal University
Main work done at Rice University

July 31, 2022

1 / 35

Linear Temporal Logic

▶ First introduced to Computer Science by A. Pnueli in 1977

▶ Formal verification (over infinite traces: LTL)

▶ AI (over finite traces : LTLf)

2 / 35

Linear Temporal Logic

Syntax for LTL and LTLf

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ | Gϕ | Fϕ;

▶ ¬(ϕ1Uϕ2) = ¬ϕ1R¬ϕ2
▶ ¬Xϕ = N¬ϕ (Weak Next), for LTLf only

▶ Fϕ = ttUϕ

▶ Gϕ = ff Rϕ

3 / 35

Linear Temporal Logic

Semantics for LTL (LTLf),
▶ Let ξ be a trace with |ξ| = n (n > 0)

▶ ξ |= p if p ∈ ξ[0]

▶ ξ |= ¬ϕ if ξ ̸|= ϕ

▶ ξ |= ϕ1 ∧ ϕ2 if ξ |= ϕ1 and ξ |= ϕ2

▶ ξ |= Xϕ if n > 1 and ξ1 |= ϕ

▶ ξ |= ϕ1Uϕ2 if (1) there is 0 ≤ i < n s.t. ξi |= ϕ2 and (2) for
every 0 ≤ j < i it holds ξj |= ϕ1.

▶ LTL semantics: n =∝

▶ LTLf semantics: n <∝

4 / 35

LTL vs. LTLf

▶ Xtt is always true in LTL, but not in LTLf

▶ (a ∧ Xtt) ̸≡ a in LTLf

▶ ¬Xϕ ̸= X¬ϕ (¬Xϕ = N¬ϕ)

▶ GXϕ is never satisfiable in LTLf

5 / 35

This Talk

▶ Present an on-the-fly approach to construct automata by SAT
solvers

▶ Show one of its applications to solve LTLf satisfiability
checking problem

6 / 35

LTL(f) to Automata

ϕ =⇒

q0start

q1

q2

q3

q4

a

b

c

d

a

b
c

d

a

7 / 35

LTL(f) to Automata

ϕ⇐⇒
∨

i (αi ∧ X (ψi))

8 / 35

LTL(f) to Automata

ϕ⇐⇒
∨

i (αi ∧ X (ψi))

Bottleneck: ϕ⇐⇒
∨

i (αi ∧ X (ψi)) is expensive!

9 / 35

LTL(f) to Automata

ϕ⇐⇒
∨

i (αi ∧ X (ψi))

Bottleneck: ϕ⇐⇒
∨

i (αi ∧ X (ψi)) is expensive!
Question: Is it possible to generate ONE successor at one time (on
the fly)?

10 / 35

neXt Normal Form (XNF)

If considering the temporal subformulas as atoms, an LTL(f)
formula ϕ becomes a Boolean formula.

We say ϕ is in XNF iff only X/N subformulas can be its atom.

11 / 35

neXt Normal Form (XNF)

Example

▶ (a ∨ bUc) ∧ cRd is not in XNF

▶ (a ∨ c ∨ b ∧ X (bUc) ∧ d ∧ (c ∨ X (cRd)) is in XNF

12 / 35

Invoking SAT solver

1. Input formula ϕ: (aUb) ∧ (¬bU¬a)

2. xnf (ϕ): (b ∨ (a ∧ X (aUb))) ∧ (¬a ∨ (¬b ∧ X (¬bU¬a)))

3. Take xnf (ϕ) as the input of a SAT solver

4. SAT solver may return: {a,¬b,X (aUb),X (¬bU¬a)}
▶ A transition in the automaton is ϕ

a∧¬b−−−→ (aUb) ∧ (¬bU¬a)

13 / 35

Invoking SAT solver

1. Input formula ϕ: (aUb) ∧ (¬bU¬a)

2. xnf (ϕ): (b ∨ (a ∧ X (aUb))) ∧ (¬a ∨ (¬b ∧ X (¬bU¬a)))

3. Take xnf (ϕ) as the input of a SAT solver

4. SAT solver may return: {a,¬b,X (aUb),X (¬bU¬a)}
▶ A transition in the automaton is ϕ

a∧¬b−−−→ (aUb) ∧ (¬bU¬a)

14 / 35

Invoking SAT solver

1. Input formula ϕ: (aUb) ∧ (¬bU¬a)

2. xnf (ϕ): (b ∨ (a ∧ X (aUb))) ∧ (¬a ∨ (¬b ∧ X (¬bU¬a)))

3. Take xnf (ϕ) as the input of a SAT solver

4. SAT solver may return: {a,¬b,X (aUb),X (¬bU¬a)}
▶ A transition in the automaton is ϕ

a∧¬b−−−→ (aUb) ∧ (¬bU¬a)

15 / 35

Invoking SAT solver

1. Input formula ϕ: (aUb) ∧ (¬bU¬a)

2. xnf (ϕ): (b ∨ (a ∧ X (aUb))) ∧ (¬a ∨ (¬b ∧ X (¬bU¬a)))

3. Take xnf (ϕ) as the input of a SAT solver

4. SAT solver may return: {a,¬b,X (aUb),X (¬bU¬a)}
▶ A transition in the automaton is ϕ

a∧¬b−−−→ (aUb) ∧ (¬bU¬a)

16 / 35

Invoking SAT solver

1. Input formula ϕ: (aUb) ∧ (¬bU¬a)

2. xnf (ϕ): (b ∨ (a ∧ X (aUb))) ∧ (¬a ∨ (¬b ∧ X (¬bU¬a)))

3. Take xnf (ϕ) as the input of a SAT solver

4. SAT solver may return: {a,¬b,X (aUb),X (¬bU¬a)}
▶ A transition in the automaton is ϕ

a∧¬b−−−→ (aUb) ∧ (¬bU¬a)

To construct the whole automaton, just do enumeration!

17 / 35

LTLf Satisfiability Checking

Problem
Given an LTLf formula ϕ, is there a finite trace ξ s.t. ξ |= ϕ?

▶ Fa is satisfiable;

▶ Fa ∧ G¬a is unsatisfiable;

18 / 35

Determining Final State

Introduce a new atom Tail to associate with X

Xψ =⇒ ¬Tail ∧ Xψ

Example

▶ b ∨ X (aUb) =⇒ b ∨ ¬Tail ∧ X (aUb)

▶ XXϕ =⇒ ¬Tail ∧ X (¬Tail ∧ Xϕ)

19 / 35

Determining Final State

Theorem
ϕ is a final state iff Tail ∧ xnf (ϕ) is satisfiable (Boolean formula).

20 / 35

BLSC: Basic SAT-based Checking

Algorithm 1 BLSC: Basic on-the-fly LTLf Satisfiability Checking

Require: An LTLf formula ϕ.
Ensure: SAT or UNSAT.
1: if Tail ∧ xnf (ϕ) is satisfiable then
2: return SAT;
3: end if
4: Add ϕ into block list;
5: Let ψ = xnf (ϕ) ∧ ¬X (block list);
6: while ψ is satisfiable do
7: Let t be a propositional assignment for ψ;
8: Let ϕ′ =

∧
{θ|Xθ ∈ t};

9: if BLSC (ϕ′) returns SAT then
10: return SAT;
11: end if
12: end while
13: return UNSAT;

21 / 35

BLSC Overview

▶ BLSC performs very well in small instances, but lacks of
scalability

▶ Computing states via SAT solvers does not save the space!

▶ Question: Can BLSC be improved?

▶ BLSC leverages the satisfiability from SAT solvers
▶ BLSC discards the unsatisfiability from SAT solvers

22 / 35

BLSC Overview

▶ BLSC performs very well in small instances, but lacks of
scalability

▶ Computing states via SAT solvers does not save the space!

▶ Question: Can BLSC be improved?

▶ BLSC leverages the satisfiability from SAT solvers
▶ BLSC discards the unsatisfiability from SAT solvers

23 / 35

BLSC Overview

▶ BLSC performs very well in small instances, but lacks of
scalability

▶ Computing states via SAT solvers does not save the space!

▶ Question: Can BLSC be improved?

▶ BLSC leverages the satisfiability from SAT solvers
▶ BLSC discards the unsatisfiability from SAT solvers

24 / 35

BLSC Overview

▶ BLSC performs very well in small instances, but lacks of
scalability

▶ Computing states via SAT solvers does not save the space!

▶ Question: Can BLSC be improved?
▶ BLSC leverages the satisfiability from SAT solvers

▶ BLSC discards the unsatisfiability from SAT solvers

25 / 35

BLSC Overview

▶ BLSC performs very well in small instances, but lacks of
scalability

▶ Computing states via SAT solvers does not save the space!

▶ Question: Can BLSC be improved?
▶ BLSC leverages the satisfiability from SAT solvers
▶ BLSC discards the unsatisfiability from SAT solvers

26 / 35

CDLSC: Conflict-Driven Checking

Tail ∧ xnf (ϕ) is UNSAT

=⇒

there is ψ s.t ψ ⊆ ϕ1 and Tail ∧ xnf (ψ) is still unsatisfiable
(UNSAT core)

1Consider ϕ have the form of
∧

ϕi
27 / 35

CDLSC: Conflict-Driven Checking

Tail ∧ xnf (ϕ) is UNSAT

=⇒

there is ψ s.t ψ ⊆ ϕ1 and Tail ∧ xnf (ψ) is still unsatisfiable
(UNSAT core)

▶ ψ can be provided by a SAT solver

▶ ψ represents a set of states that cannot reach a final state in
0 step

1Consider ϕ have the form of
∧

ϕi
28 / 35

CDLSC: Conflict-Driven Checking

Conflict Sequence: C = C0,C1,C2, . . . ,Ck(k ≥ 0)

▶ Ci : a set of states that cannot reach a final state in i steps

▶ Guided search:
▶ ψ is known in some Ci =⇒ a next state of ψ not in Ci is

preferred: xnf (ϕ) ∧ ¬XCi

▶ Otherwise, check final state: Tail ∧ xnf (ψ)

▶ Unsatisfiability check:
⋂

0≤j≤i Cj ⊆ Ci+1

29 / 35

CDLSC: Conflict-Driven Checking

Conflict Sequence: C = C0,C1,C2, . . . ,Ck(k ≥ 0)

▶ Ci : a set of states that cannot reach a final state in i steps

▶ Guided search:
▶ ψ is known in some Ci =⇒ a next state of ψ not in Ci is

preferred: xnf (ϕ) ∧ ¬XCi

▶ Otherwise, check final state: Tail ∧ xnf (ψ)

▶ Unsatisfiability check:
⋂

0≤j≤i Cj ⊆ Ci+1

30 / 35

CDLSC: Conflict-Driven Checking

Conflict Sequence: C = C0,C1,C2, . . . ,Ck(k ≥ 0)

▶ Ci : a set of states that cannot reach a final state in i steps

▶ Guided search:
▶ ψ is known in some Ci =⇒ a next state of ψ not in Ci is

preferred: xnf (ϕ) ∧ ¬XCi

▶ Otherwise, check final state: Tail ∧ xnf (ψ)

▶ Unsatisfiability check:
⋂

0≤j≤i Cj ⊆ Ci+1

31 / 35

Evaluation

▶ Benchmarks: 7446 LTL-as-LTLf formulas in previous work

▶ Platform: Rice Davinci cluster

▶ Timeout: 60 seconds for each instance
▶ Tools:

1. Aalta-finite [LZPVH14]
2. Aalta-infinite [LZPV15]
3. ltl2sat [FG16]
4. nuXmv (IC3+KLIVE) [CCDGMMMRT14]
5. BLSC
6. CDLSC

32 / 35

Evaluation

 0
 5

0
0

0
 1

0
0

0
0

 1
5

0
0

0
 2

0
0

0
0

 0 1000 2000 3000 4000 5000 6000 7000

Aalta-finite

Aalta-infinite

ltl2sat

BLSC

CDLSC

IC3+K-LIVE

Figure 1: Cactus plot for LTLf Satisfiability Checking on LTL-as-LTLf
Benchmarks.

33 / 35

Beyond Satisfiability Checking

▶ On-the-fly Synthesis for LTL over finite traces [AAAI2019]

▶ Satisfiability checking for LTL over infinite traces[FMSD 2019]

▶ Synthesis for LTL over infinite traces?

▶ On-the-fly LTL model checking?

▶ Extension to word-level?

34 / 35

Figure 2: Shanghai, Oct. 2019.

Hope to see you again VERY soon!

35 / 35

	LTL

