SAT-based Reasoning Techniques for LTL over
Finite and Infinite Traces

Jianwen Li

East China Normal University
Main work done at Rice University

July 31, 2022

1/35

Linear Temporal Logic

» First introduced to Computer Science by A. Pnueli in 1977
» Formal verification (over infinite traces: LTL)

» Al (over finite traces : LTLy)

2/35

Linear Temporal Logic

Syntax for LTL and LTL¢
pu=pld[oA OVE| X | U | dRO | Go | Fo;

~(¢1U¢2) = =1 R~2

—X¢ = N=¢ (Weak Next), for LTL¢ only
Fo = ttUop

Gop = ffR¢

vVVvyYyvyy

3/35

Linear Temporal Logic

Semantics for LTL (LTL¢),
> Let £ be a trace with |{| = n (n > 0)
> S pif pe 0]

> (=g if D
> {Edi NG if = ¢ and £ = ¢
> (=Xgpifn>1and & ¢

> = p1Ugs if (1) thereis 0 < i < ns.t. & = ¢2 and (2) for
every 0 < j < i it holds ; = ¢1.

» LTL semantics: n =

» [TLf semantics: n <o

4/35

LTL vs. LTL¢

> Xtt is always true in LTL, but not in LTL¢
» (aAXtt)Zain LTLyf
> X¢# X9 (=X = N=9)

> GX¢ is never satisfiable in LTLy

5/35

This Talk

» Present an on-the-fly approach to construct automata by SAT
solvers

» Show one of its applications to solve LTL¢ satisfiability
checking problem

6/35

LTL(f) to Automata

start —

‘/\
.

7/35

LTL(f) to Automata

¢ = V(o A X(¥i))

8/35

LTL(f) to Automata

¢ <= Vilai AX(¥))

Bottleneck: ¢ <= \/;(a; A X(2);)) is expensive!

9/35

LTL(f) to Automata

¢ = V(o A X(¥i))

Bottleneck: ¢ <= \/;(a; A X(2);)) is expensive!
Question: Is it possible to generate ONE successor at one time (on
the fly)?

10/35

neXt Normal Form (XNF)

If considering the temporal subformulas as atoms, an LTL(¢)
formula ¢ becomes a Boolean formula.

We say ¢ is in XNF iff only X /N subformulas can be its atom.

11/35

neXt Normal Form (XNF)

Example

» (aV bUc) A cRd is not in XNF
» (aVecVbAX(bUc)AdA (cV X(cRd)) is in XNF

12/35

Invoking SAT solver

1. Input formula ¢: (aUb) A (—bU—a)

13/35

Invoking SAT solver

1. Input formula ¢: (aUb) A (—bU—a)

2. xnf(¢): (bV (aA X(aUb))) A (=aV (=b A X(~bU~a)))

14/35

Invoking SAT solver

1. Input formula ¢: (aUb) A (—bU—a)
2. xnf(¢): (bV (aAX(aUb))) A (maV (=b A X(—bU=a)))

3. Take xnf(¢) as the input of a SAT solver

15/35

Invoking SAT solver

1. Input formula ¢: (aUb) A (—bU—a)
2. xnf(¢): (bV (aAX(aUb))) A (maV (=b A X(—bU=a)))
3. Take xnf(¢) as the input of a SAT solver

4. SAT solver may return: {a, —b, X(aUb), X(—~bU—a)}

> A transition in the automaton is ¢ 22 (aUb) A (—bU—-a)

16 /35

Invoking SAT solver

1. Input formula ¢: (aUb) A (—bU—a)
2. xnf(¢): (bV (aA X(aUb))) A (—aV (b A X(—bU—a)))
3. Take xnf(¢) as the input of a SAT solver

4. SAT solver may return: {a,—b, X(aUb), X(—bU-a)}

> A transition in the automaton is ¢ 22 (aUb) A (—bU—-a)

To construct the whole automaton, just do enumeration!

17/35

LTL¢ Satisfiability Checking

Problem
Given an LTLs formula ¢, is there a finite trace £ s.t. £ = ¢7?

» Fais satisfiable;

» fa A G—a is unsatisfiable;

18/35

Determining Final State

Introduce a new atom Tail to associate with X

X = —Tail A Xt

Example

> bV X(aUb) = bV —Tail A X(aUb)
> XX¢ = —Tail A X(~Tail A X¢)

19/35

Determining Final State

Theorem
¢ is a final state iff Tail A xnf(¢) is satisfiable (Boolean formula).

20/35

BLSC: Basic SAT-based Checking

Algorithm 1 BLSC: Basic on-the-fly LTL; Satisfiability Checking

Require: An LTLf formula ¢.
Ensure: SAT or UNSAT.

if Tail A xnf(¢) is satisfiable then

return SAT;
end if
Add ¢ into block_list;
Let ¢ = xnf(¢) A =X (block_list);
while v is satisfiable do
Let t be a propositional assignment for ;
Let ¢/ = A{0| X6 € t};
if BLSC (¢) returns SAT then
return SAT,;
end if
: end while
- return UNSAT;

21/35

BLSC Overview

> BLSC performs very well in small instances, but lacks of
scalability

22/35

BLSC Overview

» BLSC performs very well in small instances, but lacks of
scalability

» Computing states via SAT solvers does not save the space!

23/35

BLSC Overview

» BLSC performs very well in small instances, but lacks of
scalability

» Computing states via SAT solvers does not save the space!

» Question: Can BLSC be improved?

24/35

BLSC Overview

» BLSC performs very well in small instances, but lacks of
scalability

» Computing states via SAT solvers does not save the space!

» Question: Can BLSC be improved?
» BLSC leverages the satisfiability from SAT solvers

25/35

BLSC Overview

> BLSC performs very well in small instances, but lacks of
scalability

» Computing states via SAT solvers does not save the space!

» Question: Can BLSC be improved?

» BLSC leverages the satisfiability from SAT solvers
» BLSC discards the unsatisfiability from SAT solvers

26/35

CDLSC: Conflict-Driven Checking

Tail N xnf(cb) is UNSAT
=

there is 1 s.t 1) C ¢! and Tail A xnf (1)) is still unsatisfiable
(UNSAT core)

Consider ¢ have the form of A ¢;

27/35

CDLSC: Conflict-Driven Checking

Tail A xnf(¢) is UNSAT
—

there is v s.t 1) C ¢! and Tail A xnf(v) is still unsatisfiable
(UNSAT core)

» ¢ can be provided by a SAT solver

> 1) represents a set of states that cannot reach a final state in
0 step

!Consider ¢ have the form of A
28/35

CDLSC: Conflict-Driven Checking

Conflict Sequence: C = Gy, G, Gy, ..., Ck(k > 0)
» (; : a set of states that cannot reach a final state in / steps

29/35

CDLSC: Conflict-Driven Checking

Conflict Sequence: C = Gy, G, Gy, ..., Ck(k > 0)
» (; : a set of states that cannot reach a final state in / steps

» Guided search:

» 1) is known in some C; => a next state of ¢ not in C; is
preferred: xnf(¢) A —XC;

» Otherwise, check final state: Tail A xnf (1))

30/35

CDLSC: Conflict-Driven Checking

Conflict Sequence: C = Gy, G, Gy, ..., Ck(k > 0)
» (; : a set of states that cannot reach a final state in / steps

» Guided search:

» 1) is known in some C; => a next state of ¢ not in C; is
preferred: xnf(¢) A —XC;

» Otherwise, check final state: Tail A xnf (1))

» Unsatisfiability check: mogjgi G C G

31/35

Evaluation

» Benchmarks: 7446 LTL-as-LTLs formulas in previous work

» Platform: Rice Davinci cluster

» Timeout: 60 seconds for each instance
» Tools:

1.

ok wN

Aalta-finite [LZPVH14]

Aalta-infinite [LZPV15]

[tI2sat [FG16]

nuXmv (IC34+KLIVE) [CCDGMMMRT14]
BLSC

CDLSC

32/35

Evaluation

§ 'Aalta-finite —+—
S Aalta-infinite —><—
N [tI2sat —*—

BLSC —&—

CDLSC
=l IC3+K-LIVE —6—)
B
of |
S
o
o
ol = = = b
o
o
Irs)
é" Il Il Il Il Il Il Il
0 1000 2000 3000 4000 5000 6000 7000

Figure 1: Cactus plot for LTLs Satisfiability Checking on LTL-as-LTL¢
Benchmarks.

33/35

Beyond Satisfiability Checking

v

On-the-fly Synthesis for LTL over finite traces [AAAI2019]

v

Satisfiability checking for LTL over infinite traces|FMSD 2019]

» Synthesis for LTL over infinite traces?

v

On-the-fly LTL model checking?

» Extension to word-level?

34/35

Figure 2: Shanghai, Oct. 2019.

Hope to see you again VERY soon!

35/35

	LTL

