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Reinforcement Learning
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An Automata-Theoretic Approach to Reinforcement Learning

The problem

Specifying objectives via reward simplifies the development of new algorithms.
However, it is tedious and error-prone to specify reward manually.

Let’s specify a formal requirement and have it “compiled” to the representation used by RL.
We can use Linear Temporal Logic and ideas from probabilistic model checking!
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Model-free reward translation
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Model-free reward translation
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Model-free reward translation
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Rabin to discounted reward1

Can we use Rabin automata? No correct translation has been proposed.

Optimal strategies in RL mix.

Q∗(s, a0) = 5,Q∗(s, a1) = 5,Q∗(s, a2) = 3

Any strategy that mixes a0 and a1 in s maintains optimality.

Optimal strategies for Rabin may not mix!

1An Impossibility Result in Automata-Theoretic Reinforcement Learning. ATVA 2022.
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Rabin to discounted reward

FGa ∨ FG¬a

q1q0a ¬a
a

¬a

{〈q0, q1〉, 〈q1, q0〉}

s0α, a β

(s0, q0) (s0, q1)α β

β

α

α is optimal, β is optimal, but mixing α and β is not.

We can not reduce a Rabin automaton directly to reward without additional memory.



An Automata-Theoretic Approach to Reinforcement Learning

Rabin to discounted reward

FGa ∨ FG¬a

q1q0a ¬a
a

¬a

{〈q0, q1〉, 〈q1, q0〉}

s0α, a β

(s0, q0) (s0, q1)α β

β

α

α is optimal, β is optimal, but mixing α and β is not.

We can not reduce a Rabin automaton directly to reward without additional memory.



An Automata-Theoretic Approach to Reinforcement Learning

Büchi to discounted reward

To use Büchi automata, we may require nondeterminism.

For an automata-theoretic approach to model-checking of probabilistic programs “we eliminate
the need for a complete determinization of the given automaton.”1 – Moshe Vardi

We can use suitable limit-deterministic Büchi automata2 and more generally Good-for-MDPs
(GFM) automata.3

1Automatic Verification of Probabilistic Concurrent Finite-State Programs. Moshe Y. Vardi. FOCS 1985.
2Limit-Deterministic Büchi Automata for Linear Temporal Logic. Sickert et al. 2016
3Good-for-MDPs Automata for Probabilistic Analysis and Reinforcement Learning. TACAS 2020
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GFM Büchi to discounted reward1

How do we assign the reward?
I +1 reward on accepting edges and 0 otherwise does not work. Why?
I maximize expected frequency of accepting edges 6= maximize probability that the

frequency is positive
I Seeing accepting edges on every other step with probability 1 is valued lower than seeing

accepting edges on every step with probability 2/3.

1Omega-Regular Objectives in Model-Free Reinforcement Learning. TACAS 2019
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GFM Büchi to discounted reward

I Instead, let’s introduce an additional parameter ζ ∈ (0, 1).
I On accepting edges with probability 1− ζ assign +1 reward and terminate.

0

1 2

τ2

τ0
p 1− p

τ1 0

1 2

τ2
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τ0

pζ
(1− p)ζ

1− ζ, +R(τ0)

ζ

1− ζ, +R(τ1)

τ1

I Under total reward, satisfying traces are given a value of 1.
I Under total reward, traces that are not satisfying are given a value of ε with limζ↑1 ε = 0.
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GFM Büchi to discounted reward

Theorem (Limit reachability)
For a given MDP, there exists a threshold for ζ ′ ∈ (0, 1) and for γ′ ∈ (0, 1) such that for any
ζ > ζ ′ and γ > γ′ maximizing the discounted reward from the construction above maximizes
the probability of satisfaction of the Büchi objective.
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Summary

Instead of assigning reward manually, perform a translation from a high-level objective.
For omega-regular objectives (LTL):

I Rabin: Not possible without additional memory. There is a simple on-the-fly translation to
Büchi.

I GFM Büchi: Simply rewarding accepting edges isn’t correct. Instead, flip a weighted coin
after each accepting edge to reach an accepting sink.

I Parity1: Needed for games. Have a set of increasingly weighted coins with accepting and
rejecting sinks.

I Lexicographic2: Add a memory gadget. Then, use large enough weights to separate the
associated Büchi rewards.

1Model-Free Reinforcement Learning for Stochastic Parity Games. CONCUR 2020.
2Model-Free Reinforcement Learning for Lexicographic Omega-Regular Objectives. FM 2021.
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I GFM Büchi: Simply rewarding accepting edges isn’t correct. Instead, flip a weighted coin

after each accepting edge to reach an accepting sink.
I Parity1: Needed for games. Have a set of increasingly weighted coins with accepting and

rejecting sinks.

I Lexicographic2: Add a memory gadget. Then, use large enough weights to separate the
associated Büchi rewards.
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Mungojerrie1

https://plv.colorado.edu/mungojerrie/

1Mungojerrie: Reinforcement Learning of Linear-Time Objectives. Preprint 2021

https://plv.colorado.edu/mungojerrie/


An Automata-Theoretic Approach to Reinforcement Learning

Thank you!


