

Bisimulation Games Played in Fibered Categories

Ichiro Hasuo

National Institute of Informatics (NII), Tokyo, Japan

Based on

- Komorida, Katsumata, Hu, Klin & Hasuo, LICS'19
- Komorida, Katsumata, Kupke, Rot & Hasuo, LICS'21
- Kori, Urabe, Katsumata, Suenaga & Hasuo, CAV'22

Bridging Categorical Abstract Nonsense and Automata Theory

The categorical community (my background)

- Arrows and diagrams for everything
- Zhou shall not speak of elements
- Abstraction, generality

- Moshe: "Non-emptiness of Buechi automata?"
- Audience: "Linear-time!"

Beauty of computer science:

mathematical elegance at work

Example of Categorical Work (Coalgebras)

Categorical Uniform Definition of Bisimilarity Notions [Rutten, Jacobs, ..., '00s]

"I like Rutten's characterization of bisimilarity" (Marktoberdorf '05)

Categorical abstraction

Coalgebraic bisimulation

(Original) bisimulation

Example of Categorical Work (Coalgebras)

"I like Rutten's characterization of bisimilarity" (Marktoberdorf '05)

Coalgebraic bisimulation

Categorical abstraction

Instantiatiation Choosing the parameter **B**

(Original) bisimulation

Instance 1 for LTS

$$(B = P)$$

Instance 2 for Markov chains $(\boldsymbol{B} = \boldsymbol{D})$

Probabilistic bisimulation [Larsen & Skou '91]

Instance 3 for weighted automata $(\boldsymbol{B} = \boldsymbol{M}_{\boldsymbol{W}})$

new bisim, notion

A Categorical Business

Abstraction → Understanding Essences Instantiation → New Definitions and Theorems

Some instances are known... and some are new

Category Theory for the Working Non-Mathematician

Category Theory is a *Theoretical Backend* that Many Non-Theoreticians Fail to Appreciate

Break the *Fourth Wall*, Bridge the Object Level and the Meta Level

 $https://en.wikipedia.org/wiki/Fourth_wall\#/media/File: Chicago_Auditorium_Building,_interior_from_balcony.jpg$

The Fourth Wall

Break the Fourth Wall, Bridge the Object Level and the Meta Level

https://en.wikipedia.org/wiki/Fourth_wall#/media/File:Chicago_Auditorium_Building,_interior_from_balcony.jpg

Breaking the Fourth Wall

Line 1: [Kori+, CAV'22]

From mathematical abstraction to programming abstraction

- We can literally code the abstract theory thanks to Haskell
- Appl. to IC3/PDR (Bradley, Een, ...):
 50 LOC (general) + ~100 LOC each (instant.)
 - vs. original IC3 impl., ~900 LOC in C++
- → Come to Mayuko's talk, Mon 7 Aug [Kori+, CAV'22]

Line 2: [Komorida+, LICS'19] [Komorida+, LICS'21] Games played in categories— codensity games

position	player	possible moves
$P\in \mathbb{E}_X$	Spoiler	$k \in \mathbb{C}(X,\Omega) ext{ s.t.} \ au \circ Fk \circ c: (X,P) ilde{ imes} (\Omega,\Omega)$
$k\in\mathbb{C}(X,\Omega)$	Duplicator	

Moves are inhabitants of categories!

- objects $P \in \mathbb{E}_X$
- arrows $X \stackrel{k}{\longrightarrow} \Omega$

"Whatever you do,
I can do better with automata'

- A concrete technique (namely game characterization) employed at an abstract level
- Demonstrating the power of automata and games characterizing fixed points
 - → Rest of this talk

Even More General Definition of Bisimilarity

ERATO MMSD

[Komorida+, LICS'19] [Komorida+, LICS'21] → modal logic

Setting, Parameters

Coalgebra [Rutten, Jacobs, ...] + fibration [Benabou, Jacobs, ...]

Def. (codensity lifting)

and Its Game Characterization

$$\overline{B}^{\Omega, au}P=\prod_{k\in\mathbb{E}(P,\Omega)}ig(au\circ Big(p(k)ig)ig)^*\Omega$$

Def. (codensity bisimilarity)

$$u\left(c^* \circ \overline{B}^{\mathbf{\Omega}, \tau}\right), \quad \text{where } \mathbb{E}_X \xrightarrow{\overline{B}^{\mathbf{\Omega}, \tau}} \mathbb{E}_{BX} \xrightarrow{c^*} \mathbb{E}_X$$

Def. (codensity game)

position	player	possible moves
$P \in \mathbb{E}_X$	Spoiler	$k \in \mathbb{C}(X,\Omega)$ s.t.
		$\tau \circ Bk \circ c : (X,P) \not \to (\Omega, \mathbf{\Omega})$
$k\in\mathbb{C}(X,\Omega)$	Duplicator	$P' \in \mathbb{E}_X ext{ s.t. } k: (X, P') ilde{ op} (\Omega, \mathbf{\Omega})$

Thm. (correctness)

Duplicator is winning at P if and only if $P \sqsubseteq \nu \left(c^* \circ \overline{B}^{\Omega,\tau}\right)$

Even More General Definition of Bisimilarity

[Komorida+, LICS'19] [Komorida+, LICS'21] → modal logic

Def. (codensity lifting)

$$\overline{B}^{\Omega, au}P=\prod_{k\in\mathbb{E}(P,\Omega)}ig(au\circ Big(p(k)ig)ig)^*\Omega$$

Def. (codensity bisimilarity)

$$u\left(c^* \circ \overline{B}^{\mathbf{\Omega}, \tau}\right), \quad \text{where } \mathbb{E}_X \xrightarrow{\overline{B}^{\mathbf{\Omega}, \tau}} \mathbb{E}_{BX} \xrightarrow{c^*} \mathbb{E}_X$$

Def. (codensity game)

position	player	possible moves
$P\in\mathbb{E}_X$	Spoiler	$k \in \mathbb{C}(X,\Omega)$ s.t.
		$ au\circ Bk\circ c:(X,P) ilde{ early}(\Omega,oldsymbol{\Omega})$
$k\in\mathbb{C}(X,\Omega)$	Duplicator	$P' \in \mathbb{E}_X ext{ s.t. } k: (X,P') ilde{ ilde{ ilde{ o}}} (\Omega,oldsymbol{\Omega})$

Thm. (correctness)

Duplicator is winning at P if and only if $P \sqsubseteq \nu \left(c^* \circ \overline{B}^{\Omega, \tau} \right)$

Even More General Definition of Bisimilarity

[Komorida+, LICS'19] [Komorida+, LICS'21] → modal logic

Def. (codensity lifting)

$$\overline{B}^{\Omega, au}P=\prod_{k\in\mathbb{E}(P,\Omega)}ig(au\circ Big(p(k)ig)ig)^*\Omega$$

Def. (codensity bisimilarity)

$$u\left(c^* \circ \overline{B}^{\mathbf{\Omega}, \tau}\right), \quad \text{where } \mathbb{E}_X \xrightarrow{\overline{B}^{\mathbf{\Omega}, \tau}} \mathbb{E}_{BX} \xrightarrow{c^*} \mathbb{E}_X$$

Def. (codensity game)

position	player	possible moves
$P\in\mathbb{E}_X$	Spoiler	$k \in \mathbb{C}(X,\Omega)$ s.t.
		$ au\circ Bk\circ c:(X,P) ilde{ early}(\Omega,oldsymbol{\Omega})$
$k\in\mathbb{C}(X,\Omega)$	Duplicator	$P' \in \mathbb{E}_X ext{ s.t. } k: (X,P') ilde{ o} (\Omega,oldsymbol{\Omega})$

Thm. (correctness)

Duplicator is winning at P if and only if $P \sqsubseteq \nu \left(c^* \circ \overline{B}^{\Omega, \tau} \right)$

Even More General Definition of Bisimilarity

[Komorida+, LICS'19] [Komorida+, LICS'21] → modal logic

 $k \in \mathbb{E}(P,\Omega)$

Def. (codensity bisimilarity)

$$u\left(c^* \circ \overline{B}^{\mathbf{\Omega}, \tau}\right), \quad \text{where } \mathbb{E}_X \xrightarrow{\overline{B}^{\mathbf{\Omega}, \tau}} \mathbb{E}_{BX} \xrightarrow{c^*} \mathbb{E}_X$$

Def. (codensity game)

	position	player	possible moves
•	$P \in \mathbb{E}_X$	Spoiler	$k \in \mathbb{C}(X,\Omega)$ s.t.
			$ au\circ Bk\circ c:(X,P) ilde{ eg}(\Omega,\mathbf{\Omega})$
	$k\in\mathbb{C}(X,\Omega)$	Duplicator	$P' \in \mathbb{E}_X$ s.t. $k: (X, P') ilde{ ilde{ ilde{ ilde{ ilde{A}}}}} (\Omega, oldsymbol{\Omega})$

Thm. (correctness)

Duplicator is winning at P if and only if $P \sqsubseteq \nu \left(c^* \circ \overline{B}^{\Omega,\tau}\right)$

Even More General Definition of Bisimilarity

[Komorida+, LICS'19] [Komorida+, LICS'21] → modal logic

$$\overline{B}^{\Omega, au}P=\prod_{k\in\mathbb{E}(P,\Omega)}ig(au\circ Big(p(k)ig)ig)^*\Omega$$

Def. (codensity bisimilarity)

$$u\left(c^* \circ \overline{B}^{\mathbf{\Omega}, \tau}\right), \quad \text{where } \mathbb{E}_{X} \xrightarrow{\overline{B}^{\mathbf{\Omega}, \tau}} \mathbb{E}_{BX} \xrightarrow{c^*} \mathbb{E}_{X}$$

Def. (codensity game)

_	position	player	possible moves
-	$P \in \mathbb{E}_X$	Spoiler	$k\in\mathbb{C}(X,\Omega)$ s.t.
			$\tau \circ Bk \circ c : (X,P) \not\rightarrow (\Omega, \mathbf{\Omega})$
	$k\in\mathbb{C}(X,\Omega)$	Duplicator	$P' \in \mathbb{E}_X ext{ s.t. } k: (X,P') ilde{ o} (\Omega,oldsymbol{\Omega})$

Thm. (correctness)

Duplicator is winning at P if and only if $P \sqsubseteq \nu \left(c^* \circ \overline{B}^{\Omega,\tau}\right)$

Even More General Definition of Bisimilarity

Def. (codensity lifting)
$$\overline{B}^{\Omega, au}P=\prod_{k\in\mathbb{E}(P,\Omega)}ig(au\circ Big(p(k)ig)ig)^*\Omega$$

Def. (codensity bisimilarity)
$$\nu\left(c^* \circ \overline{B}^{\mathbf{\Omega},\tau}\right), \quad \text{where } \mathbb{E}_X \xrightarrow{\overline{B}^{\mathbf{\Omega},\tau}} \mathbb{E}_{BX} \xrightarrow{c^*} \mathbb{E}_X$$

Def. (codensity game)positionplayerpossible moves
$$P \in \mathbb{E}_X$$
Spoiler $k \in \mathbb{C}(X,\Omega)$ s.t. $\tau \circ Bk \circ c : (X,P) \not\rightarrow (\Omega,\Omega)$ $k \in \mathbb{C}(X,\Omega)$ Duplicator $P' \in \mathbb{E}_X$ s.t. $k : (X,P') \not\rightarrow (\Omega,\Omega)$

Thm. (correctness) Duplicator is winning at P if and only if $P \sqsubseteq \nu \left(c^* \circ \overline{B}^{\Omega,\tau}\right)$

Instances of Codensity Bisimilarity and Games

A Variety of Bisimulation Games— Qualitative and Quantitative Alike

$\begin{array}{|c|c|c|c|c|c|}\hline \textbf{Games for codensity bisimilarity} & \textbf{Played in categories!}\\ \hline \textbf{Position} & \textbf{player} & \textbf{possible moves}\\ \hline \textbf{$P \in \mathbb{E}_X$} & \textbf{Spoiler} & \textbf{$k \in \mathbb{C}(X,\Omega)$ s.t.}\\ & \textbf{$\tau \circ Fk \circ c: (X,P) \not\rightarrow (\Omega,\Omega)$}\\ \hline \textbf{$k \in \mathbb{C}(X,\Omega)$} & \textbf{Duplicator} & \textbf{$P' \in \mathbb{E}_X$ s.t. } \textbf{$k: (X,P') \not\rightarrow (\Omega,\Omega)$}\\ \hline \end{array}$

Categorical abstraction

Instantiatiation

Choosing the parameters B, Ω , \mathbb{E} , τ , ...

Game for prob. bisim. [Fijalkow+ ICALP'17]

position	player	possible moves
$(x,y)\in X^2$	Spoiler	$Z \subseteq X$ s.t. $c(x)(Z) \neq c(y)(Z)$
$Z \subseteq X$	Duplicator	$(x',y') \in X^2 \text{ s.t.}$ $x' \in Z \land y' \not\in Z$

Conventional bisim (Kripke frames)

	position	player	possible moves
۱.	$(x,y)\in X imes X$	Spoiler	$k \in \operatorname{Set}(X,2)$ such that exactly one of
			$\exists x' \in c(x). \ k(x') = \top \text{ and }$
			$\exists y' \in c(y). \ k(y') = \top \text{ holds}$
	$k\in \mathrm{Set}(X,2)$	Duplicator	(x'',y'') s.t. $k(x'') \neq k(y'')$

Bisimulation metric

"Bisimulation

topology'

	position	player	possible moves
C	(x,y,arepsilon)	Spoiler	$f \colon X o [0,1]$
	$\in X^2 \times [0,1]$		such that $ig E_{c(x)}[f] - E_{c(y)}[f]ig > arepsilon$
	$f\colon X \to [0,1]$	Duplicator	$(x',y',arepsilon')\in X^2 imes [0,1]$
			such that $ f(x') - f(y') > \varepsilon'$

 $\begin{array}{|c|c|c|} \hline \text{position} & \text{player} & \text{possible moves} \\ \hline \mathcal{O} \in \text{Top}_X & \text{Spoiler} & a \in \{\varepsilon\} \cup \Sigma \text{ and } k \in \text{Set}(X,2) \\ & \text{such that } \tau_a \circ (A_\Sigma k) \circ c \colon X \to 2 \\ & \text{is not continuous from } (X,\mathcal{O}) \text{ to } (2,\Omega_a) \\ \hline a \in \{\varepsilon\} \cup \Sigma & \text{Duplicator} \\ & \text{and} & \mathcal{O}' \in \text{Top}_X \\ & \text{such that } k \colon X \to 2 \\ & \text{is not continuous from } (X,\mathcal{O}') \text{ to } (2,\Omega_a) \\ \hline \end{array}$

Different game from the standard "mimicking" game

Different game from [Koenig+, CONCUR'18] that is Wassersteinbased

. .

Abstract Yet Intuitive Bisimulation Notion and Game Characterization

Def. (codensity lifting)

$$\overline{B}^{\Omega, au}P=\prod_{k\in\mathbb{E}(P,\Omega)}ig(au\circ Big(p(k)ig)ig)^*\Omega$$

... carries

by

- a pred. **P** over **X** (the current state)
- to one over BX
 (the next state)

\mathbb{E}	$P \longmapsto \overline{B}^{\mathbf{\Omega},\tau}(P)$	
$\overset{igg }{\mathbb{C}}^{oldsymbol{p}}$	$X \longrightarrow BX$	

\mathbb{E}	$ig(au\circ Bkig)^*oldsymbol{\Omega}$ $oldsymbol{\Omega}$
p	
$\overset{\downarrow}{\mathbb{C}}$	$BX {-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!\!-} B\Omega {-\!\!\!\!-\!\!\!\!-\!\!\!\!-} \Omega.$

Do	Def. (codensity game)		
	position	player	possible moves
	$P \in \mathbb{E}_X$	Spoiler	$k \in \mathbb{C}(X,\Omega)$ s.t.
			$ au\circ Bk\circ c:(X,P) ilde{ riangledown}(\Omega,oldsymbol{\Omega})$
	$k\in\mathbb{C}(X,\Omega)$	Duplicator	$P' \in \mathbb{E}_X ext{ s.t. } k: (X,P') ilde{ o} (\Omega,oldsymbol{\Omega})$

- Conventional bisim. games: challenge-defend
- Codensity games:
 blame-blame

Abstract Yet Intuitive Bisimulation Notion and Game Characterization

... carries

by

- a pred. **P** over **X** (the current state)
- to one over **BX** (the next state)

\mathbb{E}	$P \longmapsto \overline{B}^{\mathbf{\Omega},\tau}(P)$
$\downarrow p$	
\mathbb{C}	$X {-\!\!-\!\!-\!\!-\!\!-\!\!\!-\!\!\!-\!\!\!-} BX$

(3) ... along which the obs. pred. Ω is pulled back

\mathbb{E}	$oldsymbol{\left(au\circ Bk ight)^{st}oldsymbol{\Omega}}$	
$\downarrow p$		(2) Collapsed by modality $ au\colon B\Omega o\Omega$
Č	$BX {\longrightarrow} B\Omega {\longrightarrow} \Omega.$	

(1) Observation $k:X \to \Omega$ made in the next state $(Bk:BX \to B\Omega)$

Def. (codensity game)		
position	player	possible moves
$P\in\mathbb{E}_X$	Spoiler	$k \in \mathbb{C}(X,\Omega)$ s.t.
		$ au\circ Bk\circ c:(X,P) ilde{ early}(\Omega,oldsymbol{\Omega})$
$k\in\mathbb{C}(X,\Omega)$	Duplicator	$P' \in \mathbb{E}_X ext{ s.t. } k: (X, P') ilde{ op} (\Omega, \mathbf{\Omega})$

- Conventional bisim. games: challenge-defend
- Codensity games:
 blame-blame

Abstract Yet Intuitive Bisimulation Notion

(4) ... for all obs. $k:X\to\Omega$ that respects P (relation-preserving, non-expansive, continuous, ...)

and Game Characterization

Def. (codensity lifting

$$\overline{B}^{\Omega, au}P = \bigcap_{k\in\mathbb{E}(P,\Omega)} ig(au\circ Big(p(k)ig)ig)^*\Omega$$

Bk

... carries

by

- a pred. **P** over **X** (the current state)
- to one over BX
 (the next state)

\mathbb{E}	$P \longmapsto \overline{B}^{\mathbf{\Omega},\tau}(P)$	
$\downarrow p$		
\mathbb{C}	$X {\:$	

(3) ... along which the obs. pred. Ω is pulled back

\mathbb{E}	$\left(oldsymbol{ au}\circ Bk ight)^{oldsymbol{st}}oldsymbol{\Omega}$	
p		(2) Collapsed by modality $ au\colon B\Omega o\Omega$
Č	$BX \longrightarrow B\Omega \longrightarrow \Omega.$	

(1) Observation $k:X o \Omega$ made in the next state $(Bk:BX o B\Omega)$

Def. (codensity game)			
	position	player	possible moves
	$P \in \mathbb{E}_X$	Spoiler	$k \in \mathbb{C}(X,\Omega) ext{ s.t.} \ au \circ Bk \circ c: (X,P) ilde{ endagge} (\Omega,oldsymbol{\Omega})$
			$\boldsymbol{\tau} \circ Bk \circ c : (X,P) \nrightarrow (\Omega,\boldsymbol{\Omega})$
	$k\in\mathbb{C}(X,\Omega)$	Duplicator	$P' \in \mathbb{E}_X ext{ s.t. } k: (X,P') ilde{ o} (\Omega,oldsymbol{\Omega})$

- Conventional bisim. games: challenge-defend
- Codensity games:
 blame-blame

Abstract Yet Intuitive Bisimulation Notion

(4) ... for all obs. $k:X\to\Omega$ that respects P (relation-preserving, non-expansive, continuous, ...)

and Game Characterization

(2) Collapsed by modality

 $\tau \colon B\Omega \to \Omega$

Def. (codensity lifting

$$\overline{B}^{\Omega, au}P = \bigcap_{k\in\mathbb{E}(P,\Omega)} ig(au\circ Big(p(k)ig)ig)^*\Omega$$

... carries

by

- a pred. **P** over **X** (the current state)
- to one over BX
 (the next state)

\mathbb{E}	$P \longmapsto \overline{B}^{\mathbf{\Omega},\tau}(P)$
$\downarrow p$	
Ċ	$X \stackrel{c}{\longrightarrow} BX$

(3) ... along which the obs. pred. Ω is pulled back

\mathbb{E}	$ig(au\circ Bkig)^*oldsymbol{\Omega}$
p	
$\overset{\star}{\mathbb{C}}$	$BX {-\!\!\!-\!\!\!-\!\!\!-\!\!\!\!-} B\Omega {-\!\!\!\!-\!\!\!\!-\!\!\!\!-} \Omega.$

(1) Observation $k:X \to \Omega$ made in the next state $(Bk:BX \to B\Omega)$

		You're lying by claiming P as a bisimulation which is coarser than obs. $k:X o\Omega$
Def. (codensity		which is coarser than obs. $k: A \rightarrow \Sigma$
position	player	on the moves
$P\in\mathbb{E}_X$	Spoiler	$k \in \mathbb{C}(X,\Omega)$ s.t.
		$ au\circ Bk\circ c:(X,P) ilde{ early}(\Omega,oldsymbol{\Omega})$
$k\in\mathbb{C}(X,\Omega)$	Duplicator	$P' \in \mathbb{E}_X ext{ s.t. } k: (X, P') ilde{ o} (\Omega, \mathbf{\Omega})$

You're lying...

by using obs. $k:X
ightarrow \Omega$ that is illegitimately fine-grained

- Conventional bisim. games:
 challenge-defend
- Codensity games:
 blame-blame

Bridging Categorical Abstract Nonsense and Automata Theory

Break the *Fourth Wall*,
Bridge the Object Level and the Meta Level

Coalgebra + Fibration

→ General Bisimulation Game in Categories

... and thanks a million, Moshe, for your inspirations!