Vardi’s Law and Some Exceptions

The Gap between Data and Expression Complexity
Reasoning Formalisms

Georg Gottlob
University of Oxford
& TU Wien

THE COMPLEXITY OF RELATIONAL QUERY LANGUAGES

Extended Abstract

Moshe Y. Vardi|

Department of Computer Science
Stanford University
Stanford, California 94305

Abstract

Two complexity measures for query languages are
proposed. Data complexity is the complexity of evaluating
a query in the language as a function of the size of the
database. and expression complexity is the complexity of
evaluating a query in the language as a function of the size
of the expression defining the query. We study the data
and expression complexity of logical languages - relational
calculus and its extensions by transitive closure, fixpoint
and second order existential quantification - and algebraic
languages - relational algebra and its cxiensions by
bounded and unbounded looping. The pattern which will
be shown is that the expression complexity of the invest-
gated languages is one cxponential higher then their data
complexity, and for both types of complexity we show
completeness in some complexity cluss.

1. Introduction

In the last years there has been a lot of interest in
query languages for relational databases. Following
Codd's pioneering work [Codd] on the relational calculus
and algebra. a lot of work has been done on studying and
comparing the expressive power of several query languages
[AU.Ba,CH1,CH2.CH3,Chan,Coop,Pa). The approach
taken here is 10 compare query languages by investigating
the complexity of evaluating queries in these languages.

There are three ways to measure the complexity of
evaluating queries in a specific language. First, one can fix
a specific query in the language and study the complexity
of applying this query 1o arbitrary databases. The com-
plexity is then given as a function of the size of the data-
bases. We call this complexity data complexity.

Alternatively, one can fix a specific database and

FUNDAMENTAL INSIGHT AND DEFINITIONS

Data Complexity

e Expression Complexity (a.k.a. Program Complexity)
Combined Complexity

Finally. one can study the complexily of applying
queries represented by arbitrary expressions in the
language to arbitrary databases. The complexity is then
given as a function of the combined size of the expressions
and the databases. We call this complexity combined com-
plexity.

It turns out that combined complexity is pretty
closed lo expression complexity, and for this reason we

VARDI’S LAW

... This happens to be quite a typical
pattern. The expression complexity

of the investigated languages is
usually one exponential higher than
the data complexity...

This is indeed very often so, but let us see some exceptions

CASE 1: Double-Exponential Gap

Language: Guarded Datalog[d] reports(x,y) & consultant(y) = 3z (emp(z) A reports(y,z))
Semantics: Chase (possibly infinite)

Problem: Query-of-Tuple Problem (QOT)

CASE 1: Double-Exponential Gap

Language: Guarded Datalog[d]
Semantics: Chase (possibly infinite)

Problem: Query-of-Tuple Problem (QOT)

Data complexity: PTIME-complete

Expression/combined Complexity: 2EXPTIME complete.

[Cali, G., Kifer, 2012]

CASE 2: Expression Complexity = Data Complexity

Language: Monadic Datalog over trees

Semantics: Datalog semantics

Problem: Query-of-Tuple Problem (QOT)

Combined complexity: O(|Program]| x |Tree|)

Data Complexity: in LINTIME (as expressive as MSO over trees)

Expression/Combined Complexity: in LINTIME, PTIME-complete.

[G., Koch 2012]

However, Vardi’s Law is true in 95% of the languages | analysed.
Exception just confirm the rule,
Vardi’s law is almost always true!

Thank you, Moshe, for your insights.

