Approximations of Certain Answers in First-Order Logic

Leonid Libkin

Two classical papers from JACM and JCSS in 1986

Two classical papers from JACM and JCSS in 1986

A:‘S‘ound and Sometimes"COmplete Query Evaluation
Algorithm for Relational Databases with Null Values

RAYMOND REITER

University of British Columbia, Vancouver, B.C., Canada

Abstract. A sound and, in certain cases, complete method is described for evaluating queries in relational
databases with null values where these nulls represent existing but unknown individuals. The soundness
and completeness results are proved relative to a formalization of such databases as suitable theories of
first-order logic. Because the algorithm conforms to the relational algebra, it may easily be incorporated
into existing relational systems.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design-data models, H.2. 3 ‘ ;’x;
[Database Management]: Languages—query languages i
General Terms: Algorithms, Languages, Management, Theory ‘

| Additional Key Words and Phrases: Completeness proofs, first-order logic, integrity constramts, null]
| valum, query evaluation, relational algebra, relational databases, soundness proofs

Two cla
ssical
papers from JACM
and JCSS i
In 1986

i !}‘
I

Two classical papers from JACM and JCSS in 1986

I |‘!‘J.‘

(s
(e

|dea:
A database with incomplete information is a logical theory

Querying such a database is logical entailment:
the database entails the query

This is computationally hard

Hence we need to approximate

How 1t works

How 1t works

Relation R

Defines complete databases
A B .

Pows = 3Ty <R(1,x) ARG2) A R(3,y)) More common assumption
1 X l

Pews = IxIy (R(l,x) A R(x,2) A R(3,y)A YuVv (R(u, V) = (u,v)=Ux)Vwu,v)=w2)VWyv) = (3,y))>

X 2
3 | Y

How 1t works

Relation R

Defines complete databases
A B .

Dowa = IxTy <R(1,x) ARG2) A R(3,y)> More common assumption
1 X l

Pews = IxIy (R(l,x) A R(x,2) A R(3,y)A YuVv (R(u, V) = (u,v)=Ux)Vwu,v)=w2)VWyv) = (3,y))>

X 2
3 y Given a query y, to answer check whether

F @cwa = W

How 1t works

Relation R

Defines complete databases
A B .

Dowa = IxTy <R(1,x) ARG2) A R(3,y)> More common assumption
1 X l

Pews = IxIy (R(l,x) A R(x,2) A R(3,y)A YuVv (R(u, V) = (u,v)=Ux)Vwu,v)=w2)VWyv) = (3,y))>

X 2
3 y Given a query y, to answer check whether

F @cwa = W

IS certainly true

How 1t works

Relation R
Defines complete databases
A B .
Powa = Jx 3y (R(l,x) A R(x,2) A R(3,y)> More common assumption
1 X l
Pewa = Ix Iy <R(1,x) A R(x,2) ARG Y)A YuVy (R(u,v) = (u,v) = (1x) V (u,v) = (,2) V (u,v) = (3,y))>
X 2
3 y Given a query y, to answer check whether To gpproximate find a translation y — a so that
F @ews = W RF a implies F @rys — W

 Is certainly true

How 1t works

Relation R
Defines complete databases
A B .
Do = IxTy (R(l,x) A R(X2) A R(3,y)> More common assumption
1 X l
Pewa = Ix Iy <R(1,x) A R(x,2) ARG Y)A YuVy (R(u,v) = (u,v) = (1x) V (u,v) = (,2) V (u,v) = (3,y))>
X 2
3 y Given a query y, to answer check whether To approximate find a translation y — a so that
F @ews = W RF a implies F @rys — W

wis certainly true a approximates certain answer

How 1t works

Relation R
Defines complete databases
A B .
Do = IxTy (R(l,x) A R(X2) A R(3,y)> More common assumption
1 X l
Pewa = Ix Iy <R(1,x) A R(x,2) ARG Y)A YuVy (R(u,v) = (u,v) = (1x) V (u,v) = (,2) V (u,v) = (3,y))>
X 2
3 y Given a query y, to answer check whether To approximate find a translation y — a so that
F @ews = W RF a implies F @rys — W

wis certainly true a approximates certain answer

Example: Judv (R(u, V) A (1 F v)) is certainly true

What we learned back then

* Answering queries is computationally hard ()

* Everything works well for unions of conjunctive queries

e A, V,d fragment of first-order logic
 Approximation schemes are rather complex (more so in Reiter’s paper)

* Neither of them was implemented (implementable?)

A fresh look 35 years later

Rather than one translation y — a we have two: y — ' and y — 1//f

A fresh look 35 years later

Rather than one translation y — a we have two: y — ' and y — y/f

R(®) = R(®)
(x=y)=(x=y)
Wy Ayn)' =y Ay,
(Ix)’ = Ax ¢/’
() =y!

A fresh look 35 years later

Rather than one translation y — a we have two: y — ' and y — y/f

RG) = R(F) R(X) := =3y (RG) AX V)
x=y):=x=y) (x = y)f = =1(x = y) A null(x) A 7null(y)
(Y A '/fz)t = l/ff A 1/15 (W A 1//2)f = 1//{ Vv l,lfg
(dx)’ = Ax ' (Ix w) = Vx o/

(p) =y () =y

A fresh look 35 years later

X and y unify by mapping variables to constants

Rather than one translation i = a we have two: = y' and y — y/ /
RG) = R(F) R(X) := =3y (RG) AX V)
x=y):=x=y) (x =y) = =(x = y) A —nuli(x) A =null(y)
(1/11 A '/fz)t = l/ff A 1/15 (W A 1//2)f = 1//{ \% l,lfg
(Ix w)' == Ax v/ (Ax wy = Vx o/

(p) =y () =y

A fresh look 35 years later

X and y unify by mapping variables to constants

Rather than one translation y — a we have two: w = y' and y y/f /
R := R(X) R := =3y (RG) AX 1)
x=y):=x=y) (x =yY = 2(x = y) A 7null(x) A —nuli(y)
(w1 Ay = Wl Ay (i A =yl vyl
(dx w)' = Ax Y (Ix w) = Vx o/
(~y)' =y (~y) =y

What we can prove:
w' produces a subset of certain answers to i (thus E ' — y)

l//f produces a subset of certain answers to =y (thus F 1//f — 1Y)
On a database without nulls y and ' coincide

For unions of conjunctive queries y and l//’ coincide

Does it work?

In theory, yes, In practice not quite. But we can be a bit smarter

Does it work?

In theory, yes, In practice not quite. But we can be a bit smarter

Issue: unrestricted negation and disjunction— R()'c)f = =3y (R(y) A XA y)
(1/11 A llfz)f = l//{ V l/fg produce HUGE sets

Does it work?

In theory, yes, In practice not quite. But we can be a bit smarter

Issue: unrestricted negation and disjunction— R()'c)f = =3y (R(y) A XA y)
(1/11 A llfz)f = l//{ V l/fg produce HUGE sets

R®)" = R(%)
x=y":=@x=y)
(x #)T = (x #y) A 7null(x) A =null(y)
(W1 Ay)™ =y Ay
(Ax)T = Ax yw
(=) = =3y (W G AT Y)

Does it work?

In theory, yes, In practice not quite. But we can be a bit smarter

Issue: unrestricted negation and disjunction— R()'c)f = =3y (R(y) A XA)-,)
(1/11 A llfz)f = l//{ V l/fg produce HUGE sets

RE)T := R(X) R(X)’ := R(¥%)
(x=y)"=x=y) (x =)’ = (x =y) V null(x) V null(y)
(x #y)" = (x #y) A 7null(x) A =null(y) (x#y) = (x #y)
VN ANERT NS (¥, Ay =y A V(W [V/IXI A X A)

(Ix)™ = Ax y™ (3x)’ = 3% '
(=) = =35 (WG AZ) ():://fj)? = ﬂi/cﬁw

Does it work?

In theory, yes, In practice not quite. But we can be a bit smarter

Issue: unrestricted negation and disjunction— R()'c)f = =3y (R()'z) A XA)-,)
(1/11 A llfz)f = l//{ V l/fg produce HUGE sets

RE)T := R(X) R(X)’ := R(¥%)
x=y)"=(x=y) (x =) = (x =) Vnull(x) V nuli(y)
(x #)" = (x #y) Anull(x) A =null(y) (x £7y) = (x #y)
(py Ay)™ =yt Ay (i Ay =y ATF (W [F/XTAX A)
(Ix y)" = Ix y” (Ix w)’ = Ax '

(~yp)t = =35 (WG AT T) (~p)” =yt

Tried in TPC-H queries with negation, on databases of sizes up to 10GB.
Scales surprisingly well in about 75% of cases

Moral

 Don’t forget old papers
* Especially written by giants
 But don’t take them as-is many years later

 Be inspired and rethink

Why nOW? Marcelo Arenas, Pablo Barcelo, Leonid Libkin,

Wim Martens, Andreas Pieris

New database theory book Database Theory

Querying Data

Freely available on GitHub
(Preliminary Version)

Over half of the material (~*600pp) already released

July 14, 2022

We needed a clean chapter on incomplete data

Santiago Paris
Bayreuth Edinburgh

