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Algorithm for Relational Databases with Null Values
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University of British Columbia, Vancouver, B.C., Canada

Abstract. A sound and, in certain cases, complete method is described for evaluating queries in relational
databases with null values where these nulls represent existing but unknown individuals. The soundness
and completeness results are proved relative to a formalization of such databases as suitable theories of
first-order logic. Because the algorithm conforms to the relational algebra, it may easily be incorporated
into existing relational systems.
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|dea:
A database with incomplete information is a logical theory

Querying such a database is logical entailment:
the database entails the query

This is computationally hard

Hence we need to approximate
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Relation R
Defines complete databases
A B .
Do = IxTy (R(l,x) A R(X2) A R(3,y)> More common assumption
1 X l
Pewa = Ix Iy <R(1,x) A R(x,2) ARG Y)A YuVy (R(u,v) = (u,v) = (1x) V (u,v) = (,2) V (u,v) = (3,y))>
X 2
3 y Given a query y, to answer check whether  To approximate find a translation y — a so that
F @ews = W RF a implies F @rys — W

wis certainly true a approximates certain answer

Example: Judv (R(u, V) A (1 F v)) is certainly true



What we learned back then

* Answering queries is computationally hard ( )

* Everything works well for unions of conjunctive queries

e A, V,d fragment of first-order logic
 Approximation schemes are rather complex (more so in Reiter’s paper)

* Neither of them was implemented (implementable?)
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A fresh look 35 years later

X and y unify by mapping variables to constants

Rather than one translation y — a we have two: w = y' and y y/f /
R := R(X) R := =3y (RG) AX 1)
x=y):=x=y) (x =yY = 2(x = y) A 7null(x) A —nuli(y)
(w1 Ay = Wl Ay (i A =yl vyl
(dx w)' = Ax Y (Ix w) = Vx o/
(~y)' =y (~y) =y

What we can prove:
w' produces a subset of certain answers to i (thus E ' — y)

l//f produces a subset of certain answers to =y (thus F 1//f — 1Y)
On a database without nulls y and ' coincide

For unions of conjunctive queries y and l//’ coincide
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(1/11 A llfz)f = l//{ V l/fg produce HUGE sets

RE)T := R(X) R(X)’ := R(¥%)
(x=y)"=x=y) (x =)’ = (x =y) V null(x) V null(y)
(x #y)" = (x #y) A 7null(x) A =null(y) (x#y) = (x #y)
VN ANERT NS (¥, Ay =y A V(W [V/IXI A X A )

(Ix )™ = Ax y™ (3x )’ = 3% '
(=) = =35 (WG AZ ) ():://fj)? = ﬂi/cﬁw



Does it work?

In theory, yes, In practice not quite. But we can be a bit smarter

Issue: unrestricted negation and disjunction— R()'c)f = =3y (R()'z) A XA )-,)
(1/11 A llfz)f = l//{ V l/fg produce HUGE sets

RE)T := R(X) R(X)’ := R(¥%)
x=y)"=(x=y) (x =) = (x =) Vnull(x) V nuli(y)
(x # )" = (x #y) Anull(x) A =null(y) (x £7y) = (x #y)
(py Ay)™ =yt Ay (i Ay =y ATF (W [F/XTAX A )
(Ix y)" = Ix y” (Ix w)’ = Ax '

(~yp)t = =35 (WG AT T) (~p)” =yt

Tried in TPC-H queries with negation, on databases of sizes up to 10GB.
Scales surprisingly well in about 75% of cases



Moral

 Don’t forget old papers
* Especially written by giants
 But don’t take them as-is many years later

 Be inspired and rethink
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