How should agents view their environment in Reactive Synthesis?
Trace-view vs Strategy-view

Benjamin Aminof Giuseppe De Giacomo Sasha Rubin Moshe Y. Vardi

VardiFest 2022

Reactive Systems

In Reactive Systems, the agent and its environment interact: each takes an action based on the history.

Formally:

Players use functions from relevant histories to actions.

$$S: \mathrm{Hist} \to \mathrm{Act}$$

- For agents, called strategies (aka controllers, policies).

$$S_{ag}: \operatorname{Hist}_{env} \to \operatorname{Act}_{ag}$$

- For environments, whether or not they are rational, also called strategies (aka choice-functions).

$$\mathbf{S}_{env}: \mathrm{Hist}_{ag} \to \mathrm{Act}_{env}$$

- Every pair $(\mathbf{S}_{ag}, \mathbf{S}_{env})$ induces a sequence of actions. $\operatorname{play}(\mathbf{S}_{ag}, \mathbf{S}_{env})$

Environment Traces

- An environment trace is a sequence of environment actions.

$$\mathbf{O}_{env}: \mathbb{N} \to \operatorname{Act}_{env}$$

- NB. This is just an environment strategy whose actions only depend on the length of the history
- oblivious strategies
 - represent environments that do not respond to the agent (only to time).
 - very restrictive.
 - should be carefully justified if used.

Synthesis under assumptions: two views

- goal Φ_{qoal} .
- assumption (aka environment specification) Φ_{asm} . e.g., planning domain, fairness

Strategy-view:

```
Find an agent strategy S_{aq}:
```

s.t. for every env strategy S_{env} enforcing Φ_{asm} : the induced play (S_{ag}, S_{env}) satisfies Φ_{goal} .

Trace-view:

Find an agent strategy S_{ag} :

s.t. for every env trace \mathbf{O}_{env} : the induced play $(\mathbf{S}_{ag}, \mathbf{O}_{env})$ satisfies $\Phi_{asm} \to \Phi_{goal}$.

- Equirealisable, but the set of agent strategies that solve the problems need not be the same!

Synthesis of best-effort strategies

A shady casino is offering a promotion to place a single color-bet at roulette for free.

- Act_{aq} = bet red, bet black, cheat.
- Act_{env} = land red, land black, throw the agent out.
- Φ_{goal} = (bet red o X land red) and (bet black o X land black) i.e., place a winning bet.
- Φ_{asm} = (cheat \to X throw the agent out) i.e., if the agent cheats then the casino throws it out.

Clearly the agent can't enforce its goal. What should it do?

- Place a (red or black) bet.
- Cheating is guaranteed losing.

Synthesis of best-effort strategies

Best-effort strategy is one that is not (weakly-)dominated.

Strategy-view:

Find an agent strategy S_{ag} :

- s.t. for a maximal set of env strategies \mathbf{S}_{env} enforcing Φ_{asm} : the induced $\operatorname{play}(\mathbf{S}_{ag},\mathbf{S}_{env})$ satisfies Φ_{goal} .
- Placing a bet is best-effort in the strategy-view.
- 2. However, different ways of trying to define a trace-version of best-effort (e.g., using the implication) all have the major problem that cheating is a best-effort strategy.

Thus, the trace-view is not adequate for this complex form of synthesis, and the strategy view should be used instead.

Conventional wisdom

- The trace-view is adequate for linear properties
 - Reactive Synthesis for linear-time objectives (80's)
- and the strategy-view is only needed for branching properties:
 - Module Checking (90's, 00's)
 - Alternating-time logic (90's)
 - Strategy logic (10's, 20's)

Takeaway

- For complex forms of synthesis, unless carefully justified in special cases, the trace view is not adequate also for linear properties.
- Instead, take a strategy view of the environment.